Please find below the results of your literature search request.

If you would like the full text of any of the abstracts included, or would like a further search completed on this topic, please let us know.

We’d appreciate feedback on your satisfaction with this literature search. Please visit http://www.hello.nhs.uk/literature_search_feedback.asp and complete the form.

Thank you

Literature search results

<table>
<thead>
<tr>
<th>Search completed for:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Search required by:</td>
<td>6th January 2015</td>
</tr>
<tr>
<td>Search completed on:</td>
<td>7th January 2015</td>
</tr>
<tr>
<td>Search completed by:</td>
<td>Richard Bridgen</td>
</tr>
</tbody>
</table>

Search details

Healthcare workers taking blood cultures. Prevention of infection and reduction in contamination.

Resources searched

NICE Evidence; TRIP Database; Cochrane Library; BNI CINAHL; EMBASE; MEDLINE; Google Scholar

Database search terms: “blood culture”*; BLOOD CULTURE; “blood cultures” contamination; assistant adj2 practitioner*; “clinical support” adj1 (worker* OR assistant* OR staff*); (assistant* OR support OR worker*) adj1 (role* OR care OR clinical); support* adj1 (worker* OR assistant* OR staff*); HCSW*; HCA*; exp HEALTH PERSONNEL; contaminat*; exp MICROBIAL CONTAMINATION; exp BACTERIAL CONTAMINATION;

Evidence / Google Scholar search string(s): "blood cultures" contamination (HCSW; "healthcare assistant"; "healthcare worker"; "clinical support"; "assistant practitioner"); "blood cultures" contamination

Summary

I have found some research. I have limited it to healthcare support workers, as this is how I interpreted your query, but if you want me to include all healthcare staff, including nurses and doctors, please let me know.
Guidelines and Policy

Emergency Nurses Association
Clinical practice guideline: prevention of blood culture contamination 2012

Evidence Reviews

BestBETs
Blood cultures from peripheral IV cannula versus dedicated venepuncture 2007
Taking blood samples for culture from a freshly inserted IV cannula appears to be associated with higher rates of contamination than when samples are taken by dedicated venepuncture. Additionally, in the papers we looked at, there is no convincing evidence that the isolation of true pathogens is affected by collection method.

Cochrane Database of Systematic Reviews
Skin preparation with alcohol versus alcohol followed by any antiseptic for preventing bacteraemia or contamination of blood for transfusion 2013
We did not identify any eligible studies for inclusion in this review. It is therefore unclear whether a two-step, alcohol followed by antiseptic skin cleansing process prior to blood donation confers any reduction in the risk of blood contamination or bacteraemia in blood recipients, or conversely whether a one-step process increases risk above that associated with a two-step process.

Database of Abstracts of Reviews of Effects
Review of clinical trials of skin antiseptic agents used to reduce blood culture contamination 2008
There was no clear evidence on the effectiveness of antiseptic agents for preventing false-positive blood culture results. However, there was evidence of some possible benefits from the use of pre-packaged skin antiseptic kits and alcohol-containing antiseptics, but optimum strategies remain unknown.

Published Research – Databases

1. Clinical effect of a multidisciplinary team approach to the initial treatment of patients with hospital-acquired bloodstream infections at a Japanese university hospital.

 Author(s) Tsukamoto, Hitoshi, Higashi, Takashi, Nakamura, Toshiaki, Yano, Ryoichi, Hida, Yukio, Muroi, Yoko, Ikegaya, Satoshi, Iwasaki, Hiromichi, Masada, Mikio

 Citation: American Journal of Infection Control, 01 September 2014, vol./is. 42/9(970-975), 01966553

 Publication Date: 01 September 2014

 Abstract: Background Hospital-acquired bloodstream infections (BSIs) are significant causes of mortality, and strategies to improve outcomes are needed. We aimed to evaluate the clinical efficacy of a multidisciplinary infection control team (ICT) approach to the initial treatment of patients with hospital-acquired BSI. Methods A before–after quasieperimental study of patients with hospital-acquired BSI was performed in a Japanese university hospital. The ICT provided immediate recommendations to the attending physician about appropriate antimicrobial therapy and management after reviewing blood cultures, Gram’s stain, final organism, and antimicrobial susceptibility results. Results The sample included 469 patients with hospital-acquired BSI (n = 210, preintervention group; n = 259, postintervention group). There were no significant differences between the groups in
background or microbiologic characteristics. The 30-day mortality was significantly lower and significantly more patients received appropriate antimicrobial therapy in the postintervention group (22.9% vs 14.3%; P = .02 and 86.5% vs 69.0%; P < .001, respectively). Multivariate analysis confirmed that the ICT intervention was significantly associated with appropriate antimicrobial therapy (odds ratio, 2.22; 95% confidence interval, 1.27-3.89) and 30-day mortality (odds ratio, 0.49; 95% confidence interval, 0.25-0.95). Conclusions A timely multidisciplinary team approach decreases the delay of appropriate antimicrobial treatment and may improve HABSI patient outcomes.

Source: CINAHL

Author(s) Murphy, Theresa, Maile, Deborah, Barsch, Tara, Jerdan, Florence

Citation: Journal of Infusion Nursing, 01 May 2014, vol./is. 37/3(205-210), 15331458

Publication Date: 01 May 2014

Source: CINAHL

3. Contamination rate of blood tests and its determining factors.

Author(s) De La Rubia-Orti, José Enrique, Verdu-Tresoli, Gemma, Prado-Gascó, Vicente, Selvi-Sabater, Pablo, Firmino-Canhoto, Joao

Citation: Acta Paulista de Enfermagem, 01 March 2014, vol./is. 27/2(144-150), 01032100

Publication Date: 01 March 2014

Abstract: Objective: Determining the contamination rate of blood cultures and its determining factors. Methods: During a period of six months, were analyzed 564 blood culture samples requested at hospital emergency wards and 46 nurses were inquired. Results: In a period of six months, among a total of 564 requests, 92 blood cultures were contaminated, which corresponds to a contamination rate of 16.31%. The determining factor was the use of low-level sterile technique. Conclusion: The contamination rate of blood cultures is directly related to the procedures used by the nursing staff, and the workload is directly related to errors in the sterile technique of collection.

Source: CINAHL

Available in fulltext from Acta Paulista de Enfermagem at Directory of Open Access Journals

Available in fulltext from Acta Paulista de Enfermagem at Free Access Content

Author(s) Velasco, Roberto, Fernández, Jose Luis, Campo, Maria Natali, Puente, Sara

Citation: JEN: Journal of Emergency Nursing, 01 January 2014, vol./is. 40/1(36-38), 00991767

Publication Date: 01 January 2014

Abstract: Introduction: Between 2009 and 2010, the rate of contamination of hemocultures drawn in our emergency department was much higher than the quality standards recommended, so we decided to check the extraction procedure of the samples to detect possible faults. We also wanted to study the perception of the nursing staff about the quality of their practice. Methods: This is a prospective study developed in 2 phases. In the first phase, medical staff observed the extraction of hemocultures. In the second phase, an anonymous test was sent to the nursing staff of the emergency department. Results: We observed major faults in the extraction procedure. Of the 10 items checked, only 2 had a compliance rate greater than 50%. There were significant differences between test answers and data recovered from observation in 7 items. Discussion: Several technical deficiencies were observed in the procedure for extraction of blood cultures. This fact partly explains the
high rate of contamination found in our emergency department.

Source: CINAHL

5. Reducing False-Positive Peripheral Blood Cultures in a Pediatric Emergency Department.

Author(s) Marini, Michelle A., Truog, Amy W.

Citation: JEN: Journal of Emergency Nursing, 01 September 2013, vol./is. 39/5(440-446), 00991767

Publication Date: 01 September 2013

Abstract: Introduction: False-positive peripheral blood cultures due to contamination pose clinical and financial consequences for patients, families, and hospitals. Educating staff who draw peripheral blood cultures about hospital policy, using a blood culture–drawing kit, having a dedicated team obtaining peripheral blood cultures, and following up with staff who draw a contaminated peripheral blood cultures have been shown to reduce the rate of false-positive peripheral blood cultures. The objective of this study was to reduce the rate of false-positive peripheral blood cultures in a pediatric emergency department using the previously mentioned measures. Methods: This quality-improvement initiative used a retrospective chart-review approach to examine false-positive peripheral blood cultures drawn in 2009. In June 2010 a month-long education campaign about the initiative was conducted for nurses and clinical assistant staff to reduce false-positive peripheral blood cultures. From July 2010 through June 2011, monthly retrospective chart audits of false-positive peripheral blood cultures were completed in conjunction with bimonthly e-mail communication about the study, development of a blood culture–drawing kit, and follow-up with staff who drew the false-positive cultures. Results: In 2009 the false-positive peripheral blood culture rate in the emergency department was 2.1%. After educational interventions and use of a blood culture–drawing kit, the rate of false-positive peripheral blood cultures decreased to 1.4%. Discussion: The decline in contaminated blood cultures shows that the interventions described significantly reduced the rate of false-positive peripheral blood cultures in the emergency department.

Source: CINAHL

Author(s) Harding, Andrew D., Bollinger, Susan

Citation: JEN: Journal of Emergency Nursing, 01 January 2013, vol./is. 39/1(0-), 00991767

Publication Date: 01 January 2013

Source: CINAHL

7. Effective strategy for decreasing blood culture contamination rates: the experience of a veterans affairs medical centre.

Author(s) Youssef D, Shams W, Bailey B, O'Neil TJ, Al-Abbadi MA

Citation: Journal of Hospital Infection, 01 August 2012, vol./is. 81/4(288-291), 01956701

Publication Date: 01 August 2012

Abstract: Contaminated blood cultures constitute diagnostic challenges and place a burden on healthcare services. An observational retrospective study was undertaken to evaluate the effect of routine labelling of blood culture bottles with the initials of the healthcare worker who drew them, followed by individualized feedback, on blood culture contamination rates. The contamination rate of the entire facility was 2.6% before the procedural change, and this decreased significantly to 1.5% after the procedural change (P < 0.001) over the first 12 months of the intervention. Routine labelling of blood culture bottles with the initials of the healthcare worker who drew them, followed by individualized feedback, was effective in reducing blood culture contamination rates.

Source: CINAHL
8. Evidence-based nursing. Steps to lowering blood culture contamination rates in the ED.
Author(s) Ropp, Paul
Citation: Nursing Management, 01 February 2012, vol./is. 43/2(10-12), 07446314
Publication Date: 01 February 2012
Source: CINAHL
Available in fulltext from Nursing Management at Ovid

9. The risk of blood culture contamination associated with specimen collection through peripheral intravenous catheters
Author(s) Self W.H., Speroff T., McNaughton C.D., Wright P.W., Miller G., Johnson J., Daniels T.L., Talbot T.R.
Citation: Annals of Emergency Medicine, October 2011, vol./is. 58/4 SUPPL. 1(S220-S221), 0196-0644 (October 2011)
Publication Date: October 2011
Abstract: Study Objectives: Blood culture contamination is a common, costly, and preventable problem resulting in lower health care quality. Cultures are frequently obtained through peripheral intravenous catheters in the emergency department (ED) because of the perception that this technique avoids additional venipuncture, which can be painful for patients, time-consuming for health care workers, and increases the risk for needle stick injuries. It is unknown whether culture collection through peripheral intravenous catheters increases the risk of contamination compared to collection by fresh peripheral venipuncture. The purpose of this study was to quantify the risk of contamination associated with obtaining blood cultures through peripheral intravenous catheters compared to collection by fresh peripheral venipuncture. Methods: We conducted a matched cross sectional study of blood cultures collected from adult patients for clinical purposes between January 1 and December 31, 2009 in the ED and in-patient units at a tertiary care, university-affiliated hospital. We matched cultures collected through a peripheral intravenous catheter to cultures obtained by fresh peripheral venipuncture from the same patient within a 4-hour period. Positive cultures were categorized as truly positive or contaminated based on a standardized algorithm involving review by 3, independent, blinded infectious disease specialists. For the primary analysis, the relative risk (RR) with 95% confidence intervals (CI) of contamination among peripheral intravenous catheters - cultures was calculated with fresh peripheral venipuncture -cultures as a referent. In a secondary analysis, the proportion of truly positive peripheral intravenous catheters - cultures was compared to fresh peripheral venipuncture -cultures. Results: During the study period, 27,806 blood cultures were collected; 4,539 cultures were obtained through peripheral intravenous catheters and 1,555 of these peripheral intravenous catheter-drawn cultures were matched to fresh peripheral venipuncture -cultures. The risk of contamination associated with collection through peripheral intravenous catheters was 6.11%, compared to 3.15% for cultures collected by fresh peripheral venipuncture (RR 1.94, 95% CI 1.40 - 2.68). Cultures collected through peripheral intravenous catheters had an 8.68% true positive rate, compared to 7.52% for cultures collected by fresh peripheral venipuncture (RR 1.15, 95% CI 1.02 - 1.29). Obtaining 1,000 cultures through peripheral intravenous catheters instead of by fresh peripheral venipuncture would result in 30 additional contaminated cultures and 12 additional true positives. Conclusions: While blood cultures collected through peripheral intravenous catheters are more convenient and safer for health care workers, less painful for patients, and may yield more true positive results compared to cultures collected by fresh peripheral venipuncture, they are also associated with a substantially higher risk of contamination. Policy makers developing protocols for blood culturing practices must weigh this elevated risk of contamination against the advantages of catheter-drawn specimens.
Source: EMBASE
10. EB50: Action Plan to Decrease Blood Culture Contamination Rates in the Medical Intensive Care Unit.

Author(s) Gambrel, Kerri, Duncan, Pamela

Citation: Critical Care Nurse, 01 April 2011, vol./is. 31/2(0-0), 02795442

Publication Date: 01 April 2011

Source: CINAHL

Available in fulltext from Critical Care Nurse at Free Access Content

Available in fulltext from Critical Care Nurse at EBSCOhost

Available in fulltext from Critical Care Nurse at Highwire Press

11. Reducing blood-culture contamination through an education program.

Author(s) Robert, Ruth R.

Citation: Journal of Infusion Nursing, 01 January 2011, vol./is. 34/1(49-54), 15331458

Publication Date: 01 January 2011

Abstract: A blood culture is the cornerstone of an established etiological diagnosis of septicemia. Although it is not currently possible to eliminate blood-culture contamination, many interventions have been shown to reduce contamination rates. Retrospective data analysis through an initial audit with major departments at one hospital, including the intensive care unit and emergency department, showed that the blood-culture contamination rate was 4.8%, which is more than the set standard (ie, less than 3%). A decrease in blood-culture contamination rates from the initial 4.8% to less than 3% was obtained with a supervised training and evaluation program through collaborative efforts of the nursing and laboratory departments.

Source: CINAHL

Author(s) Sheppard C, Franks N, Nolte F, Fantz C

Citation: American Journal of Clinical Pathology, October 2008, vol./is. 130/4(573-7), 0002-9173;0002-9173 (2008 Oct)

Publication Date: October 2008

Abstract: The purpose of our study was to improve the quality of care in an emergency department (ED) as measured by length of stay (LOS), total turnaround time (TAT) for laboratory result reporting, and the blood culture contamination rate. Data were included for patients who had at least 1 of 5 laboratory tests performed as part of their care. The study was conducted in 2 phases. First, phlebotomy was performed by a dedicated phlebotomist or nonlaboratory personnel. The second phase added a dedicated laboratory technologist. There was a significant reduction in total TAT for all tests (at least 46 and 75 minutes in the respective interventions), and blood culture contamination rates dropped from 5.0% to 1.1%, although the overall LOS did not change. Estimated cost avoidance is more than $400,000 annually. Quality of care in an ED is improved when samples are collected by a dedicated phlebotomist, but overall LOS does not change.

Source: Medline

Available in fulltext from American Journal of Clinical Pathology at Free Access Content

13. Peripheral blood culture contamination in adults and venepuncture technique: Prospective cohort study.

Author(s) Qamruddin A., Khanna N., Orr D.

Citation: Journal of Clinical Pathology, April 2008, vol./is. 61/4(509-513), 0021-9746 (April
2008)

Publication Date: April 2008

Abstract: Aims: To test the hypothesis that compliance with a hospital protocol on peripheral blood culture (PBC) collection in adults is associated with a reduction in PBC contamination, and to investigate likely contributing factors for contamination. Methods: A prospective cohort study was conducted, utilising data collection by participant questionnaire completion, and utilising bacteriology laboratory results on PBCs. Participants were all healthcare workers involved in obtaining PBCs from adults. Results: 1460 PBCs with questionnaires were received. Contamination among the 1460 PBCs as a whole was 8.8%. 766 of the questionnaires were sufficiently complete to allow analysis of blood culture contamination in relation to protocol compliance. Among these, protocol compliance was 30% and contamination was 8.0%. When the protocol was complied with, 2.6% of PBCs were contaminated, but when the protocol was not followed, contamination was significantly higher at 10.3% (OR 4.35, 95% CI 1.84 to 12.54). Univariate analysis on all 1460 PBCs suggested that the site for blood collection, and disinfection of the venepuncture site were important factors in PBC contamination; when no venepuncture site disinfection was performed, contamination was significantly higher than when alcohol was used (5.1% versus 15.8%, OR 3.46, 95% CI 2.01 to 5.97); when a PBC collection site other than a fresh peripheral vein was used, contamination was significantly higher (7.3% versus 12.0%, OR 1.75, 75% CI 1.03 to 2.96). Conclusions: Compliance with a hospital protocol on PBC collection technique in adults significantly reduces blood culture contamination.

Source: EMBASE

Available in fulltext from Journal of Clinical Pathology at Free Access Content

Available in fulltext from Journal of Clinical Pathology at Free Access Content

Available in fulltext from Journal of Clinical Pathology at EBSCOhost

14. Impact of educational interventions on the quality of blood culture specimens

Author(s) Senok A., Jamsheer A., Sharaf E.J., Botta G.A.

Citation: Journal of the Bahrain Medical Society, July 2006, vol./is. 18/3(133-138), 1015-6321 (July 2006)

Publication Date: July 2006

Abstract: Rationale. Blood cultures (BC) are among the most important specimens for detection of etiologic agents in severe infections. At Salmaniya Medical Complex (SMC), the number of BCs increased from 10580 in 2002 to 13123 for 2004. The specimens likely to be contaminated averages 4.5% of the total BC processed with consumption of human and financial resources. We assessed the impact of an educational intervention aimed at decreasing false positivity to internationally accepted levels (<3%). Materials and methods. During October-November 2004, BC received at the Microbiology Laboratory at SMC were examined for appropriateness. During the ensuing two investigational months (December 2004-January 2005) an educational intervention was carried out which included phone calls, personal visits in the Wards, practical and theoretical sessions with the health care workers, distribution of Guidelines and attachment of online messages to reports. In the post-intervention period (February -March 2005), the appropriateness parameters were reassessed. Results. Fifty-nine percent of BC received was inappropriate with no significant changes before and after the educational intervention. Although we were able to decrease the number of volume-appropriate bottles likely contaminated and reduce the number of cultures likely contaminated, the figures were still above the international benchmark value. We observed an increase in the number of bottles containing less than the minimal requirement of 3ml of blood. Conclusion. Education per se is not effective in reducing contamination and costs. To succeed the best approach will be to rely on dedicated phlebotomists team which can be a cost effective solution saving between USD720,00 and 1.3 million annually.

Source: EMBASE

OBJECTIVE: The objective of this study was to assess the role played by the patient's age and physician's experience in determining the contamination rate of pediatric blood cultures.

METHODS: The proportion of true-positive (isolation of a pathogen) and false-positive (isolation of a contaminant) results among blood cultures obtained by in-training physicians and experienced pediatricians from young children (aged 1-35 months) and older children (>or=36 months of age) and the value of a positive blood culture to predict a true-positive result were retrospectively determined.

RESULTS: The odds of a positive blood culture to predict isolation of a true-pathogen was 0.366 only when the sample was obtained by an inexperienced physician and 0.523 when it was drawn by an experienced physician (P < 0.001), 0.419 when it was obtained from a young child and 0.429 when it was drawn from an older child (P = 0.781). The predictive value of a positive result for isolating a pathogen was significant higher when an experienced physician drew the blood culture regardless of the patient's age.

CONCLUSIONS: Patient's young age and lack of experience of the physician who draws the specimen increase the risk of blood culture contamination. These results strengthen the need to improve the technical skills of young physicians.

Source: Medline

16. Reduction in the contamination rate of blood cultures collected by medical staff in the accident and emergency department.

Author(s) Madeo M, Davies D, Owen L, Wadsworth P, Johnson G, Martin CR

Citation: Clinical Effectiveness in Nursing, 01 March 2003, vol./is. 7/1(30-32), 13619004

Publication Date: 01 March 2003

Source: CINAHL

17. Developing a protocol for obtaining blood cultures from central venous catheters and peripheral sites.

Author(s) Penwarden LM, Montgomery PG

Citation: Clinical Journal of Oncology Nursing, 01 September 2002, vol./is. 6/5(268-273), 10921095

Publication Date: 01 September 2002

Abstract: Blood cultures frequently are obtained from patients with cancer who are suspected to have infection. A review of the literature revealed that consistent clinical guidelines or standards for obtaining blood cultures from patients with cancer do not exist. The published literature varies greatly with respect to site selection (peripheral or central), frequency, and timing. In addition, a survey at the researchers' institution revealed that blood culture orders were written and interpreted in various ways. After a multidisciplinary discussion, a review of the literature, and receiving expert advice, an institutional protocol for obtaining blood cultures from patients with cancer was developed. The protocol specifies between peripheral and central line sampling and establishes timing, frequency, and other guidelines so nurses can perform consistent and evidence-based blood culture sampling. Use of the protocol has improved patient care and helped standardize the practice of obtaining blood cultures.

Source: CINAHL

Available in fulltext from Clinical Journal of Oncology Nursing at EBSCOhost

18. The phlebotomist's role in the collection phase of a blood culture.

Author(s) Jacobsen R

Author(s) Ramsook C, Childers K, Cron SG, Nirken M

Citation: Infection Control & Hospital Epidemiology, 01 October 2000, vol./is. 21/10(649-651), 0899823X

Publication Date: 01 October 2000

Abstract: We compared contamination rates of blood cultures obtained either from newly inserted intravenous catheters or via venipuncture. Of 2,431 blood cultures, the overall contamination rate was 2.7% (intravenous catheter, 3.4%; venipuncture, 2.0%; P=.043). The site of lowest contamination was the antecubital fossa, making this the optimal choice for blood-culture sampling.

Source: CINAHL

Available in print at Grantham Hospital Staff Library

Google Scholar

From the 1st fifty results:

[HTML] Blood culture contamination: persisting problems and partial progress

... focuses on how pathogen-contaminant decisions are made, the phenomenon of increasing contamination of blood cultures, potential methods for addressing high contamination rates, and practical laboratory approaches to the workup of likely contaminants. ...

Cited by 226 Related articles All 7 versions Cite Save

Contamination of catheter-drawn blood cultures

RJ Everts, EN Vinson, PO Adholla... - Journal of clinical ..., 2001 - Am Soc Microbiol

ABSTRACT To assess the risk of contamination, we reviewed retrospectively 1,408 matched pairs of simultaneous catheter-drawn and venipuncture blood cultures. Catheter-drawn cultures were equally likely to be truly positive (14.4 versus 13.7%) but more likely to be ...

Cited by 62 Related articles All 9 versions Cite Save

Comparison of four antiseptic preparations for skin in the prevention of contamination of percutaneously drawn blood cultures: a randomized trial

ABSTRACT A number of skin antiseptics have been used to prevent the contamination of blood cultures, but the comparative efficacies of these agents have not been extensively evaluated. We therefore sought to compare the efficacy of four skin antiseptics in ...

Cited by 70 Related articles All 7 versions Cite Save

Impact of blood cultures drawn by phlebotomy on contamination rates and health care costs in a hospital emergency department

RM Gander, L Byrd, M DeCrescenzo... - Journal of clinical ..., 2009 - Am Soc Microbiol
ABSTRACT We conducted a prospective comparison of blood culture contamination rates associated with dedicated phlebotomists and nonphlebotomy staff in the emergency department (ED) at Parkland Memorial Hospital in Dallas, TX. In addition, hospital charges ...

Cited by 73 Related articles All 9 versions Cite Save

Blood cultures: clinical aspects and controversies
JM Mylotte, A Tayara - European journal of clinical microbiology and ..., 2000 - Springer
... evidence indicating bacteremia had more than one positive blood culture compared to 11% of patients with positive blood cultures that were felt to represent contamination. ... In contrast, organisms such as diphtheroids and Bacillus species were found only as contaminants. ...
Cited by 109 Related articles All 10 versions Cite Save

Simple measures to reduce the rate of contamination of blood cultures in accident and emergency
The usefulness of blood cultures taken in the Accident and Emergency department (A&E) remains open to question. In two A&E based studies only 1.6% of blood cultures taken in one study had an impact on the management of patients1 and in another only 0.52% potentially had ...
Cited by 25 Related articles All 7 versions Cite Save

[HTML] Reduction of blood culture contamination rate by an educational intervention
S Eskira, J Gilad, P Schlaeffer, E Hyam... - Clinical microbiology ..., 2006 - Wiley Online Library
... contamination (BCC) is common, accounting for up to 50% of positive blood cultures (BCs) [1 ... therapy, prolonged stay and additional costs (> 3300 Euros/episode) [6,7]. Contamination results from ... BCC was defined as growth of typical contaminants from one or two bottles during ...
Cited by 35 Related articles All 7 versions Cite Save

Updated review of blood culture contamination
KK Hall, JA Lyman - Clinical microbiology reviews, 2006 - Am Soc Microbiol
... negative staphylococci were usually believed to represent contamination when isolated from blood cultures. In fact, coagulase-negative staphylococci are the most common blood culture contaminants, typically representing 70% to 80% of all contaminated blood cultures (25, 92 ... Cited by 241 Related articles All 11 versions Cite Save

Skin antisepsis kits containing alcohol and chlorhexidine gluconate or tincture of iodine are associated with low rates of blood culture contamination
BW Trautner, JE Clarridge, RO Darouiche - Infection control and hospital ..., 2002 - JSTOR
... However, if both isolates were considered true pathogens or contaminants, the culture was counted ... test for dependent proportions was used to compare the rates of contamination associated with ... of 215 patients were enrolled in the study, and 430 blood cultures were collected ...
Cited by 41 Related articles All 4 versions Cite Save More
<table>
<thead>
<tr>
<th></th>
<th>Database</th>
<th>Search Strategy</th>
<th>Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CINAHL</td>
<td>(blood adj2 culture*).ti, ab</td>
<td>1662</td>
</tr>
<tr>
<td>2</td>
<td>CINAHL</td>
<td>(healthcare adj1 (worker* OR assistant*)).ti,ab</td>
<td>3015</td>
</tr>
<tr>
<td>3</td>
<td>CINAHL</td>
<td>(assistant* adj1 practitioner*).ti, ab</td>
<td>182</td>
</tr>
<tr>
<td>4</td>
<td>CINAHL</td>
<td>("clinical support" adj1 (worker* OR assistant* OR staff*)).ti,ab</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>CINAHL</td>
<td>((assistant* OR support OR worker*) adj1 (role* OR care OR clinical)).ti, ab</td>
<td>10659</td>
</tr>
<tr>
<td>6</td>
<td>CINAHL</td>
<td>(support* adj1 (worker* OR assistant* OR staff*)).ti,ab</td>
<td>370</td>
</tr>
<tr>
<td>7</td>
<td>CINAHL</td>
<td>2 OR 3 OR 4 OR 6</td>
<td>3508</td>
</tr>
<tr>
<td>8</td>
<td>CINAHL</td>
<td>1 AND 7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>CINAHL</td>
<td>1 AND 5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>CINAHL</td>
<td>8 OR 9</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>CINAHL</td>
<td>exp HEALTH PERSONNEL/</td>
<td>316539</td>
</tr>
<tr>
<td>12</td>
<td>CINAHL</td>
<td>exp MICROBIAL CONTAMINATION/ OR exp BACTERIAL CONTAMINATION/</td>
<td>2598</td>
</tr>
<tr>
<td>13</td>
<td>CINAHL</td>
<td>contaminat*.ti, ab</td>
<td>6208</td>
</tr>
<tr>
<td>14</td>
<td>CINAHL</td>
<td>1 AND 12</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>CINAHL</td>
<td>12 OR 13 OR 14</td>
<td>323763</td>
</tr>
<tr>
<td>16</td>
<td>CINAHL</td>
<td>9 OR 10 OR 15</td>
<td>59</td>
</tr>
<tr>
<td>17</td>
<td>CINAHL</td>
<td>16 AND 17</td>
<td>54</td>
</tr>
<tr>
<td>18</td>
<td>BNI</td>
<td>(blood adj2 culture*).ti, ab</td>
<td>43</td>
</tr>
<tr>
<td>19</td>
<td>BNI</td>
<td>(healthcare adj1 (worker* OR assistant*)).ti,ab</td>
<td>974</td>
</tr>
<tr>
<td>20</td>
<td>BNI</td>
<td>(assistant* adj1 practitioner*).ti, ab</td>
<td>228</td>
</tr>
<tr>
<td>21</td>
<td>BNI</td>
<td>("clinical support" adj1 (worker* OR assistant* OR staff*)).ti,ab</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>BNI</td>
<td>((assistant* OR support OR worker*) adj1 (role* OR care OR clinical)).ti, ab</td>
<td>2690</td>
</tr>
<tr>
<td>23</td>
<td>BNI</td>
<td>(support* adj1 (worker* OR assistant* OR staff*)).ti,ab</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>BNI</td>
<td>20 OR 21 OR 22 OR 24</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>BNI</td>
<td>19 AND 25</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>BNI</td>
<td>19 AND 23</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>BNI</td>
<td>26 OR 27</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>BNI</td>
<td>exp HEALTH PERSONNEL/</td>
<td>85</td>
</tr>
<tr>
<td>29</td>
<td>BNI</td>
<td>exp MICROBIAL CONTAMINATION/ OR exp BACTERIAL CONTAMINATION/</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>BNI</td>
<td>contaminat*.ti, ab</td>
<td>373</td>
</tr>
<tr>
<td>31</td>
<td>BNI</td>
<td>19 AND 29</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>BNI</td>
<td>29 OR 30 OR 31</td>
<td>458</td>
</tr>
<tr>
<td>33</td>
<td>BNI</td>
<td>27 OR 28 OR 32</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>BNI</td>
<td>33 AND 34</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>BNI</td>
<td>HCSW*.ti, ab</td>
<td>24</td>
</tr>
<tr>
<td>36</td>
<td>BNI</td>
<td>HCA*.ti, ab</td>
<td>449</td>
</tr>
<tr>
<td>37</td>
<td>EMBASE</td>
<td>(blood adj2 culture*).ti, ab</td>
<td>28644</td>
</tr>
<tr>
<td>38</td>
<td>EMBASE</td>
<td>(healthcare adj1 (worker* OR assistant*)).ti,ab</td>
<td>6577</td>
</tr>
<tr>
<td>39</td>
<td>EMBASE</td>
<td>(assistant* adj1 practitioner*).ti, ab</td>
<td>69</td>
</tr>
<tr>
<td>40</td>
<td>EMBASE</td>
<td>("clinical support" adj1 (worker* OR assistant* OR staff*)).ti,ab</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>EMBASE</td>
<td>((assistant* OR support OR worker*) adj1 (role* OR care OR clinical)).ti, ab</td>
<td>17994</td>
</tr>
<tr>
<td>42</td>
<td>EMBASE</td>
<td>(support* adj1 (worker* OR assistant* OR staff*)).ti,ab</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>EMBASE</td>
<td>56 OR 57 OR 58 OR 60</td>
<td>6655</td>
</tr>
</tbody>
</table>